Ornstein-Uhlenbeck and renormalization semigroups

نویسنده

  • William G. Faris
چکیده

The Ornstein-Uhlenbeck semigroup combines Gaussian diffusion with the flow of a linear vector field. In infinite dimensional settings there can be non-Gaussian invariant measures. This gives a context for one version of the renormalization group. The adjoint of the OrnsteinUhlenbeck semigroup with respect to an invariant measure need not be an Ornstein-Uhlenbeck semigroup. This adjoint is the appropriate semigroup to analyze the local stability of the invariant measure under the renormalization group. 2000 Math. Subject Class. Primary 81T17, 82B28, 60G60, 47D06; Secondary 60J60.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-selfadjoint Ornstein-Uhlenbeck semigroups

The talk will describe Ornstein-Uhlenbeck semigroups and explore an example in infinite dimensions related to the renormalization group of quantum field theory. An Ornstein-Uhlenbeck semigroup describes a diffusion process with constant diffusion and linear drift. The resulting effect is Gaussian convolution followed by rescaling. The first goal of the talk is to contrast the situation of detai...

متن کامل

On Analytic Ornstein-uhlenbeck Semigroups in Infinite Dimensions

We extend to infinite dimensions an explicit formula of Chill, Fašangová, Metafune, and Pallara [2] for the optimal angle of analyticity of analytic Ornstein-Uhlenbeck semigroups. The main ingredient is an abstract representation of the Ornstein-Uhlenbeck operator in divergence form.

متن کامل

Regularizing properties for transition semigroups and semilinear parabolic equations in Banach spaces

We study regularizing properties for transition semigroups related to Ornstein Uhlenbeck processes with values in a Banach space E which is continuously and densely embedded in a real and separable Hilbert space H . Namely we study conditions under which the transition semigroup maps continuous and bounded functions into differentiable functions. Via a Girsanov type theorem such properties exte...

متن کامل

Non-differentiable Skew Convolution Semigroups and Related Ornstein-Uhlenbeck Processes

Abstract: It is proved that a general non-differentiable skew convolution semigroup associated with a strongly continuous semigroup of linear operators on a real separable Hilbert space can be extended to a differentiable one on the entrance space of the linear semigroup. A càdlàg strong Markov process on an enlargement of the entrance space is constructed from which we obtain a realization of ...

متن کامل

Generalized Mehler Semigroups and Catalytic Branching Processes with Immigration

Skew convolution semigroups play an important role in the study of generalized Mehler semigroups and Ornstein-Uhlenbeck processes. We give a characterization for a general skew convolution semigroup on real separable Hilbert space whose characteristic functional is not necessarily differentiable at the initial time. A connection between this subject and catalytic branching superprocesses is est...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002